datarobot.CustomModelLlmValidation
Explore with Pulumi AI

Custom Model LLM Validation
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as datarobot from "@datarobot/pulumi-datarobot";
const example = new datarobot.CustomModelLlmValidation("example", {
deploymentId: datarobot_deployment.example.id,
promptColumnName: "promptText",
targetColumnName: "resultText",
chatModelId: "111111111111",
predictionTimeout: 100,
useCaseId: datarobot.use_case.example.id,
});
export const exampleId = example.id;
import pulumi
import pulumi_datarobot as datarobot
example = datarobot.CustomModelLlmValidation("example",
deployment_id=datarobot_deployment["example"]["id"],
prompt_column_name="promptText",
target_column_name="resultText",
chat_model_id="111111111111",
prediction_timeout=100,
use_case_id=datarobot["use_case"]["example"]["id"])
pulumi.export("exampleId", example.id)
package main
import (
"github.com/datarobot-community/pulumi-datarobot/sdk/go/datarobot"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
example, err := datarobot.NewCustomModelLlmValidation(ctx, "example", &datarobot.CustomModelLlmValidationArgs{
DeploymentId: pulumi.Any(datarobot_deployment.Example.Id),
PromptColumnName: pulumi.String("promptText"),
TargetColumnName: pulumi.String("resultText"),
ChatModelId: pulumi.String("111111111111"),
PredictionTimeout: pulumi.Int(100),
UseCaseId: pulumi.Any(datarobot.Use_case.Example.Id),
})
if err != nil {
return err
}
ctx.Export("exampleId", example.ID())
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Datarobot = DataRobotPulumi.Datarobot;
return await Deployment.RunAsync(() =>
{
var example = new Datarobot.CustomModelLlmValidation("example", new()
{
DeploymentId = datarobot_deployment.Example.Id,
PromptColumnName = "promptText",
TargetColumnName = "resultText",
ChatModelId = "111111111111",
PredictionTimeout = 100,
UseCaseId = datarobot.Use_case.Example.Id,
});
return new Dictionary<string, object?>
{
["exampleId"] = example.Id,
};
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.datarobot.CustomModelLlmValidation;
import com.pulumi.datarobot.CustomModelLlmValidationArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var example = new CustomModelLlmValidation("example", CustomModelLlmValidationArgs.builder()
.deploymentId(datarobot_deployment.example().id())
.promptColumnName("promptText")
.targetColumnName("resultText")
.chatModelId("111111111111")
.predictionTimeout(100)
.useCaseId(datarobot.use_case().example().id())
.build());
ctx.export("exampleId", example.id());
}
}
resources:
example:
type: datarobot:CustomModelLlmValidation
properties:
deploymentId: ${datarobot_deployment.example.id}
# Optional
promptColumnName: promptText
targetColumnName: resultText
chatModelId: '111111111111'
predictionTimeout: 100
useCaseId: ${datarobot.use_case.example.id}
outputs:
exampleId: ${example.id}
Create CustomModelLlmValidation Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new CustomModelLlmValidation(name: string, args: CustomModelLlmValidationArgs, opts?: CustomResourceOptions);
@overload
def CustomModelLlmValidation(resource_name: str,
args: CustomModelLlmValidationArgs,
opts: Optional[ResourceOptions] = None)
@overload
def CustomModelLlmValidation(resource_name: str,
opts: Optional[ResourceOptions] = None,
deployment_id: Optional[str] = None,
chat_model_id: Optional[str] = None,
model_id: Optional[str] = None,
name: Optional[str] = None,
prediction_timeout: Optional[int] = None,
prompt_column_name: Optional[str] = None,
target_column_name: Optional[str] = None,
use_case_id: Optional[str] = None)
func NewCustomModelLlmValidation(ctx *Context, name string, args CustomModelLlmValidationArgs, opts ...ResourceOption) (*CustomModelLlmValidation, error)
public CustomModelLlmValidation(string name, CustomModelLlmValidationArgs args, CustomResourceOptions? opts = null)
public CustomModelLlmValidation(String name, CustomModelLlmValidationArgs args)
public CustomModelLlmValidation(String name, CustomModelLlmValidationArgs args, CustomResourceOptions options)
type: datarobot:CustomModelLlmValidation
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args CustomModelLlmValidationArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args CustomModelLlmValidationArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args CustomModelLlmValidationArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args CustomModelLlmValidationArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args CustomModelLlmValidationArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var customModelLlmValidationResource = new Datarobot.CustomModelLlmValidation("customModelLlmValidationResource", new()
{
DeploymentId = "string",
ChatModelId = "string",
ModelId = "string",
Name = "string",
PredictionTimeout = 0,
PromptColumnName = "string",
TargetColumnName = "string",
UseCaseId = "string",
});
example, err := datarobot.NewCustomModelLlmValidation(ctx, "customModelLlmValidationResource", &datarobot.CustomModelLlmValidationArgs{
DeploymentId: pulumi.String("string"),
ChatModelId: pulumi.String("string"),
ModelId: pulumi.String("string"),
Name: pulumi.String("string"),
PredictionTimeout: pulumi.Int(0),
PromptColumnName: pulumi.String("string"),
TargetColumnName: pulumi.String("string"),
UseCaseId: pulumi.String("string"),
})
var customModelLlmValidationResource = new CustomModelLlmValidation("customModelLlmValidationResource", CustomModelLlmValidationArgs.builder()
.deploymentId("string")
.chatModelId("string")
.modelId("string")
.name("string")
.predictionTimeout(0)
.promptColumnName("string")
.targetColumnName("string")
.useCaseId("string")
.build());
custom_model_llm_validation_resource = datarobot.CustomModelLlmValidation("customModelLlmValidationResource",
deployment_id="string",
chat_model_id="string",
model_id="string",
name="string",
prediction_timeout=0,
prompt_column_name="string",
target_column_name="string",
use_case_id="string")
const customModelLlmValidationResource = new datarobot.CustomModelLlmValidation("customModelLlmValidationResource", {
deploymentId: "string",
chatModelId: "string",
modelId: "string",
name: "string",
predictionTimeout: 0,
promptColumnName: "string",
targetColumnName: "string",
useCaseId: "string",
});
type: datarobot:CustomModelLlmValidation
properties:
chatModelId: string
deploymentId: string
modelId: string
name: string
predictionTimeout: 0
promptColumnName: string
targetColumnName: string
useCaseId: string
CustomModelLlmValidation Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The CustomModelLlmValidation resource accepts the following input properties:
- Deployment
Id string - The ID of the custom model deployment.
- Chat
Model stringId - The ID of the chat model to use for the custom model LLM validation.
- Model
Id string - The ID of the model used in the deployment.
- Name string
- The name to use for the validated custom model.
- Prediction
Timeout int - The timeout in seconds for the prediction when validating a custom model. Defaults to 300.
- Prompt
Column stringName - The name of the column the custom model uses for prompt text input.
- Target
Column stringName - The name of the column the custom model uses for prediction output.
- Use
Case stringId - The ID of the use case to associate with the validated custom model.
- Deployment
Id string - The ID of the custom model deployment.
- Chat
Model stringId - The ID of the chat model to use for the custom model LLM validation.
- Model
Id string - The ID of the model used in the deployment.
- Name string
- The name to use for the validated custom model.
- Prediction
Timeout int - The timeout in seconds for the prediction when validating a custom model. Defaults to 300.
- Prompt
Column stringName - The name of the column the custom model uses for prompt text input.
- Target
Column stringName - The name of the column the custom model uses for prediction output.
- Use
Case stringId - The ID of the use case to associate with the validated custom model.
- deployment
Id String - The ID of the custom model deployment.
- chat
Model StringId - The ID of the chat model to use for the custom model LLM validation.
- model
Id String - The ID of the model used in the deployment.
- name String
- The name to use for the validated custom model.
- prediction
Timeout Integer - The timeout in seconds for the prediction when validating a custom model. Defaults to 300.
- prompt
Column StringName - The name of the column the custom model uses for prompt text input.
- target
Column StringName - The name of the column the custom model uses for prediction output.
- use
Case StringId - The ID of the use case to associate with the validated custom model.
- deployment
Id string - The ID of the custom model deployment.
- chat
Model stringId - The ID of the chat model to use for the custom model LLM validation.
- model
Id string - The ID of the model used in the deployment.
- name string
- The name to use for the validated custom model.
- prediction
Timeout number - The timeout in seconds for the prediction when validating a custom model. Defaults to 300.
- prompt
Column stringName - The name of the column the custom model uses for prompt text input.
- target
Column stringName - The name of the column the custom model uses for prediction output.
- use
Case stringId - The ID of the use case to associate with the validated custom model.
- deployment_
id str - The ID of the custom model deployment.
- chat_
model_ strid - The ID of the chat model to use for the custom model LLM validation.
- model_
id str - The ID of the model used in the deployment.
- name str
- The name to use for the validated custom model.
- prediction_
timeout int - The timeout in seconds for the prediction when validating a custom model. Defaults to 300.
- prompt_
column_ strname - The name of the column the custom model uses for prompt text input.
- target_
column_ strname - The name of the column the custom model uses for prediction output.
- use_
case_ strid - The ID of the use case to associate with the validated custom model.
- deployment
Id String - The ID of the custom model deployment.
- chat
Model StringId - The ID of the chat model to use for the custom model LLM validation.
- model
Id String - The ID of the model used in the deployment.
- name String
- The name to use for the validated custom model.
- prediction
Timeout Number - The timeout in seconds for the prediction when validating a custom model. Defaults to 300.
- prompt
Column StringName - The name of the column the custom model uses for prompt text input.
- target
Column StringName - The name of the column the custom model uses for prediction output.
- use
Case StringId - The ID of the use case to associate with the validated custom model.
Outputs
All input properties are implicitly available as output properties. Additionally, the CustomModelLlmValidation resource produces the following output properties:
- Id string
- The provider-assigned unique ID for this managed resource.
- Id string
- The provider-assigned unique ID for this managed resource.
- id String
- The provider-assigned unique ID for this managed resource.
- id string
- The provider-assigned unique ID for this managed resource.
- id str
- The provider-assigned unique ID for this managed resource.
- id String
- The provider-assigned unique ID for this managed resource.
Look up Existing CustomModelLlmValidation Resource
Get an existing CustomModelLlmValidation resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: CustomModelLlmValidationState, opts?: CustomResourceOptions): CustomModelLlmValidation
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
chat_model_id: Optional[str] = None,
deployment_id: Optional[str] = None,
model_id: Optional[str] = None,
name: Optional[str] = None,
prediction_timeout: Optional[int] = None,
prompt_column_name: Optional[str] = None,
target_column_name: Optional[str] = None,
use_case_id: Optional[str] = None) -> CustomModelLlmValidation
func GetCustomModelLlmValidation(ctx *Context, name string, id IDInput, state *CustomModelLlmValidationState, opts ...ResourceOption) (*CustomModelLlmValidation, error)
public static CustomModelLlmValidation Get(string name, Input<string> id, CustomModelLlmValidationState? state, CustomResourceOptions? opts = null)
public static CustomModelLlmValidation get(String name, Output<String> id, CustomModelLlmValidationState state, CustomResourceOptions options)
resources: _: type: datarobot:CustomModelLlmValidation get: id: ${id}
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Chat
Model stringId - The ID of the chat model to use for the custom model LLM validation.
- Deployment
Id string - The ID of the custom model deployment.
- Model
Id string - The ID of the model used in the deployment.
- Name string
- The name to use for the validated custom model.
- Prediction
Timeout int - The timeout in seconds for the prediction when validating a custom model. Defaults to 300.
- Prompt
Column stringName - The name of the column the custom model uses for prompt text input.
- Target
Column stringName - The name of the column the custom model uses for prediction output.
- Use
Case stringId - The ID of the use case to associate with the validated custom model.
- Chat
Model stringId - The ID of the chat model to use for the custom model LLM validation.
- Deployment
Id string - The ID of the custom model deployment.
- Model
Id string - The ID of the model used in the deployment.
- Name string
- The name to use for the validated custom model.
- Prediction
Timeout int - The timeout in seconds for the prediction when validating a custom model. Defaults to 300.
- Prompt
Column stringName - The name of the column the custom model uses for prompt text input.
- Target
Column stringName - The name of the column the custom model uses for prediction output.
- Use
Case stringId - The ID of the use case to associate with the validated custom model.
- chat
Model StringId - The ID of the chat model to use for the custom model LLM validation.
- deployment
Id String - The ID of the custom model deployment.
- model
Id String - The ID of the model used in the deployment.
- name String
- The name to use for the validated custom model.
- prediction
Timeout Integer - The timeout in seconds for the prediction when validating a custom model. Defaults to 300.
- prompt
Column StringName - The name of the column the custom model uses for prompt text input.
- target
Column StringName - The name of the column the custom model uses for prediction output.
- use
Case StringId - The ID of the use case to associate with the validated custom model.
- chat
Model stringId - The ID of the chat model to use for the custom model LLM validation.
- deployment
Id string - The ID of the custom model deployment.
- model
Id string - The ID of the model used in the deployment.
- name string
- The name to use for the validated custom model.
- prediction
Timeout number - The timeout in seconds for the prediction when validating a custom model. Defaults to 300.
- prompt
Column stringName - The name of the column the custom model uses for prompt text input.
- target
Column stringName - The name of the column the custom model uses for prediction output.
- use
Case stringId - The ID of the use case to associate with the validated custom model.
- chat_
model_ strid - The ID of the chat model to use for the custom model LLM validation.
- deployment_
id str - The ID of the custom model deployment.
- model_
id str - The ID of the model used in the deployment.
- name str
- The name to use for the validated custom model.
- prediction_
timeout int - The timeout in seconds for the prediction when validating a custom model. Defaults to 300.
- prompt_
column_ strname - The name of the column the custom model uses for prompt text input.
- target_
column_ strname - The name of the column the custom model uses for prediction output.
- use_
case_ strid - The ID of the use case to associate with the validated custom model.
- chat
Model StringId - The ID of the chat model to use for the custom model LLM validation.
- deployment
Id String - The ID of the custom model deployment.
- model
Id String - The ID of the model used in the deployment.
- name String
- The name to use for the validated custom model.
- prediction
Timeout Number - The timeout in seconds for the prediction when validating a custom model. Defaults to 300.
- prompt
Column StringName - The name of the column the custom model uses for prompt text input.
- target
Column StringName - The name of the column the custom model uses for prediction output.
- use
Case StringId - The ID of the use case to associate with the validated custom model.
Package Details
- Repository
- datarobot datarobot-community/pulumi-datarobot
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
datarobot
Terraform Provider.
